فصل هفتم: اهداف

کتاب: زندگی 3.0 / فصل 33

زندگی 3.0

41 فصل

فصل هفتم: اهداف

توضیح مختصر

  • زمان مطالعه 0 دقیقه
  • سطح خیلی سخت

دانلود اپلیکیشن «زیبوک»

این فصل را می‌توانید به بهترین شکل و با امکانات عالی در اپلیکیشن «زیبوک» بخوانید

دانلود اپلیکیشن «زیبوک»

فایل صوتی

برای دسترسی به این محتوا بایستی اپلیکیشن زبانشناس را نصب کنید.

متن انگلیسی فصل

Chapter 7

Goals

The mystery of human existence lies not in just staying alive, but in finding something to live for.

Fyodor Dostoyevsky, The Brothers Karamazov

Life is a journey, not a destination.

Ralph Waldo Emerson

If I had to summarize in a single word what the thorniest AI controversies are about, it would be “goals”: Should we give AI goals, and if so, whose goals? How can we give AI goals? Can we ensure that these goals are retained even if the AI gets smarter? Can we change the goals of an AI that’s smarter than us? What are our ultimate goals? These questions are not only difficult, but also crucial for the future of life: if we don’t know what we want, we’re less likely to get it, and if we cede control to machines that don’t share our goals, then we’re likely to get what we don’t want.

Physics: The Origin of Goals

To shed light on these questions, let’s first explore the ultimate origin of goals. When we look around us in the world, some processes strike us as goal-oriented while others don’t. Consider, for example, the process of a soccer ball being kicked for the game-winning shot. The behavior of the ball itself does not appear goal-oriented, and is most economically explained in terms of Newton’s laws of motion, as a reaction to the kick. The behavior of the player, on the other hand, is most economically explained not mechanistically in terms of atoms pushing each other around, but in terms of her having the goal of maximizing her team’s score. How did such goal-oriented behavior emerge from the physics of our early Universe, which consisted merely of a bunch of particles bouncing around seemingly without goals?

Intriguingly, the ultimate roots of goal-oriented behavior can be found in the laws of physics themselves, and manifest themselves even in simple processes that don’t involve life. If a lifeguard rescues a swimmer, as in figure 7.1, we expect her not to go in a straight line, but to run a bit further along the beach where she can go faster than in the water, thereby turning slightly when she enters the water. We naturally interpret her choice of trajectory as goal-oriented, since out of all possible trajectories, she’s deliberately choosing the optimal one that gets her to the swimmer as fast as possible. Yet a simple light ray similarly bends when it enters water (see figure 7.1), also minimizing the travel time to its destination! How can this be?

This is known in physics as Fermat’s principle, articulated in 1662, and it provides an alternative way of predicting the behavior of light rays. Remarkably, physicists have since discovered that all laws of classical physics can be mathematically reformulated in an analogous way: out of all ways that nature could choose to do something, it prefers the optimal way, which typically boils down to minimizing or maximizing some quantity. There are two mathematically equivalent ways of describing each physical law: either as the past causing the future, or as nature optimizing something. Although the second way usually isn’t taught in introductory physics courses because the math is tougher, I feel that it’s more elegant and profound. If a person is trying to optimize something (for example, their score, their wealth or their happiness) we’ll naturally describe their pursuit of it as goal-oriented. So if nature itself is trying to optimize something, then no wonder that goal-oriented behavior can emerge: it was hardwired in from the start, in the very laws of physics.

One famous quantity that nature strives to maximize is entropy, which loosely speaking measures how messy things are. The second law of thermodynamics states that entropy tends to increase until it reaches its maximum possible value. Ignoring the effects of gravity for now, this maximally messy end state is called heat death, and corresponds to everything being spread out in boring perfect uniformity, with no complexity, no life and no change. When you pour cold milk into hot coffee, for example, your beverage appears to march irreversibly toward its own personal heat death goal, and before long, it’s all just a uniform lukewarm mixture. If a living organism dies, its entropy also starts to rise, and before long, the arrangement of its particles tends to get much less organized.

Nature’s apparent goal to increase entropy helps explain why time seems to have a preferred direction, making movies look unrealistic if played backward: if you drop a glass of wine, you expect it to shatter against the floor and increase global messiness (entropy). If you then saw it unshatter and come flying back up to your hand intact (decreasing entropy), you probably wouldn’t drink it, figuring you’d already had a glass too many.

When I first learned about our inexorable progression toward heat death, I found it rather depressing, and I wasn’t alone: thermodynamics pioneer Lord Kelvin wrote in 1841 that “the result would inevitably be a state of universal rest and death,” and it’s hard to find solace in the idea that nature’s long-term goal is to maximize death and destruction. However, more recent discoveries have shown that things aren’t quite that bad. First of all, gravity behaves differently from all other forces and strives to make our Universe not more uniform and boring but more clumpy and interesting. Gravity therefore transformed our boring early Universe, which was almost perfectly uniform, into today’s clumpy and beautifully complex cosmos, teeming with galaxies, stars and planets. Thanks to gravity, there’s now a wide range of temperatures allowing life to thrive by combining hot and cold: we live on a comfortably warm planet absorbing 6,000°C (10,000°F) solar heat while cooling off by radiating waste heat into frigid space whose temperature is just 3°C (5°F) above absolute zero.

Second, recent work by my MIT colleague Jeremy England and others has brought more good news, showing that thermodynamics also endows nature with a goal more inspiring than heat death.1 This goal goes by the geeky name dissipation-driven adaptation, which basically means that random groups of particles strive to organize themselves so as to extract energy from their environment as efficiently as possible (“dissipation” means causing entropy to increase, typically by turning useful energy into heat, often while doing useful work in the process). For example, a bunch of molecules exposed to sunlight would over time tend to arrange themselves to get better and better at absorbing sunlight. In other words, nature appears to have a built-in goal of producing self-organizing systems that are increasingly complex and lifelike, and this goal is hardwired into the very laws of physics.

How can we reconcile this cosmic drive toward life with the cosmic drive toward heat death? The answer can be found in the famous 1944 book What’s Life? by Erwin Schrödinger, one of the founders of quantum mechanics. Schrödinger pointed out that a hallmark of a living system is that it maintains or reduces its entropy by increasing the entropy around it. In other words, the second law of thermodynamics has a life loophole: although the total entropy must increase, it’s allowed to decrease in some places as long as it increases even more elsewhere. So life maintains or increases its complexity by making its environment messier.

Biology: The Evolution of Goals

We just saw how the origin of goal-oriented behavior can be traced all the way back to the laws of physics, which appear to endow particles with the goal of arranging themselves so as to extract energy from their environment as efficiently as possible. A great way for a particle arrangement to further this goal is to make copies of itself, to produce more energy absorbers. There are many known examples of such emergent self-replication: for example, vortices in turbulent fluids can make copies of themselves, and clusters of microspheres can coax nearby spheres into forming identical clusters. At some point, a particular arrangement of particles got so good at copying itself that it could do so almost indefinitely by extracting energy and raw materials from its environment. We call such a particle arrangement life. We still know very little about how life originated on Earth, but we know that primitive life forms were already here about 4 billion years ago.

If a life form copies itself and the copies do the same, then the total number will keep doubling at regular intervals until the population size bumps up against resource limitations or other problems. Repeated doubling soon produces huge numbers: if you start with one and double just three hundred times, you get a quantity exceeding the number of particles in our Universe. This means that not long after the first primitive life form appeared, huge quantities of matter had come alive. Sometimes the copying wasn’t perfect, so soon there were many different life forms trying to copy themselves, competing for the same finite resources. Darwinian evolution had begun.

If you had been quietly observing Earth around the time when life got started, you would have noticed a dramatic change in goal-oriented behavior. Whereas earlier, the particles seemed as though they were trying to increase average messiness in various ways, these newly ubiquitous self-copying patterns seemed to have a different goal: not dissipation but replication. Charles Darwin elegantly explained why: since the most efficient copiers outcompete and dominate the others, before long any random life form you look at will be highly optimized for the goal of replication.

How could the goal change from dissipation to replication when the laws of physics stayed the same? The answer is that the fundamental goal (dissipation) didn’t change, but led to a different instrumental goal, that is, a subgoal that helped accomplish the fundamental goal. Take eating, for example. We all seem to have the goal of satisfying our hunger cravings even though we know that evolution’s only fundamental goal is replication, not mastication. This is because eating aids replication: starving to death gets in the way of having kids. In the same way, replication aids dissipation, because a planet teeming with life is more efficient at dissipating energy. So in a sense, our cosmos invented life to help it approach heat death faster. If you pour sugar on your kitchen floor, it can in principle retain its useful chemical energy for years, but if ants show up, they’ll dissipate that energy in no time. Similarly, the petroleum reserves buried in the Earth’s crust would have retained their useful chemical energy for much longer had we bipedal life forms not pumped it up and burned it.

Among today’s evolved denizens of Earth, these instrumental goals seem to have taken on a life of their own: although evolution optimized them for the sole goal of replication, many spend much of their time not producing offspring but on activities such as sleeping, pursuing food, building homes, asserting dominance and fighting or helping others—sometimes even to an extent that reduces replication. Research in evolutionary psychology, economics and artificial intelligence has elegantly explained why. Some economists used to model people as rational agents, idealized decision makers who always choose whatever action is optimal in pursuit of their goal, but this is obviously unrealistic. In practice, these agents have what Nobel laureate and AI pioneer Herbert Simon termed “bounded rationality” because they have limited resources: the rationality of their decisions is limited by their available information, their available time to think and their available hardware with which to think. This means that when Darwinian evolution is optimizing an organism to attain a goal, the best it can do is implement an approximate algorithm that works reasonably well in the restricted context where the agent typically finds itself. Evolution has implemented replication optimization in precisely this way: rather than ask in every situation which action will maximize an organism’s number of successful offspring, it implements a hodgepodge of heuristic hacks: rules of thumb that usually work well. For most animals, these include sex drive, drinking when thirsty, eating when hungry and avoiding things that taste bad or hurt.

These rules of thumb sometimes fail badly in situations that they weren’t designed to handle, such as when rats eat delicious-tasting rat poison, when moths get lured into glue traps by seductive female fragrances and when bugs fly into candle flames.*1 Since today’s human society is very different from the environment evolution optimized our rules of thumb for, we shouldn’t be surprised to find that our behavior often fails to maximize baby making. For example, the subgoal of not starving to death is implemented in part as a desire to consume caloric foods, triggering today’s obesity epidemic and dating difficulties. The subgoal to procreate was implemented as a desire for sex rather than as a desire to become a sperm/egg donor, even though the latter can produce more babies with less effort.

مشارکت کنندگان در این صفحه

تا کنون فردی در بازسازی این صفحه مشارکت نداشته است.

🖊 شما نیز می‌توانید برای مشارکت در ترجمه‌ی این صفحه یا اصلاح متن انگلیسی، به این لینک مراجعه بفرمایید.