کاملا بخاطر بسپار - علم یادگیری موفق

7 فصل

فصل 04

توضیح مختصر

  • زمان مطالعه 0 دقیقه
  • سطح خیلی سخت

دانلود اپلیکیشن «زیبوک»

این فصل را می‌توانید به بهترین شکل و با امکانات عالی در اپلیکیشن «زیبوک» بخوانید

دانلود اپلیکیشن «زیبوک»

فایل صوتی

برای دسترسی به این محتوا بایستی اپلیکیشن زبانشناس را نصب کنید.

متن انگلیسی فصل

“Spatial disorientation” is the aeronautical term for a deadly combination of two elements: losing sight of the horizon and relying on human sensory perception that doesn’t jibe with reality but is so convincing that pilots conclude their cockpit instruments have failed. As Kahneman says, System 1, the instinctual, reflexive system that detects danger and keeps us safe, can be very hard to overrule. Flight 006’s initial incident, the loss of an engine cruising at altitude, is not considered an emergency, but it quickly became one as a result of the captain’s actions. Rather than following prescribed procedure, and rather than fully engaging his System 2 analytic resources by monitoring all his instruments, he let himself become preoccupied with the engine restart and with a single flight indicator, airspeed. Then, when things spiraled out of control, he trusted his senses over his gauges, in effect trying to construct his own narrative of what was happening to the plane.

There’s a long list of illusions to which pilots can fall prey (some with mordant names like “the leans,” “graveyard spin,” and “the black hole approach”) and sites on the Internet where you can listen to the chilling last words of pilots struggling and failing to understand and correct what’s gone wrong in the sky. Spatial disorientation was deemed the probable cause of the crash that killed Mel Carnahan, the governor of Missouri, while being flown through a thunderstorm one night in October 2000, and the probable cause of the crash that killed John F. Kennedy Jr. and his wife and her sister off the shore of Martha’s Vineyard on a hazy night in July 1999. Fortunately, the China Airlines incident came to a good end, but the National Transportation Safety Board report of that incident reveals just how quickly training and professionalism can be hijacked by System 1 illusion, and therefore why we need to cultivate a disciplined System 2, conscious analysis and reasoning, that always keeps one eye on the flight instruments.3 Illusions and Memory Distortions

The filmmaker Errol Morris, in a series of articles on illusion in the New York Times, quotes the social psychologist David Dunning on humans’ penchant for “motivated reasoning,” or, as Dunning put it, the “sheer genius people have at convincing themselves of congenial conclusions while denying the truth of inconvenient ones.”4 (The British prime minister Benjamin Disraeli once said of a political opponent that his conscience was not his guide but his accomplice.) There are many ways that our System 1 and System 2 judgments can be led astray: perceptual illusions like those experienced by pilots, faulty narrative, distortions of memory, failure to recognize when a new kind of problem requires a new kind of solution, and a variety of cognitive biases to which we’re prone. We describe a number of these hazards here, and then we offer measures you can take, akin to scanning the cockpit instruments, to help keep your thinking aligned with reality.

Our understanding of the world is shaped by a hunger for narrative that rises out of our discomfort with ambiguity and arbitrary events. When surprising things happen, we search for an explanation. The urge to resolve ambiguity can be surprisingly potent, even when the subject is inconsequential. In a study where participants thought they were being measured for reading comprehension and their ability to solve anagrams, they were exposed to the distraction of a background phone conversation. Some heard only one side of a conversation, and others heard both sides. The participants, not knowing that the distraction itself was the subject of the study, tried to ignore what they were hearing so as to stay focused on the reading and anagram solutions. The results showed that overhearing one side of a conversation proved more distracting than overhearing both sides, and the content of those partial conversations was better recalled later by the unintentional eavesdroppers. Why was this? Presumably, those overhearing half a conversation were strongly compelled to try to infer the missing half in a way that made for a complete narrative. As the authors point out, the study may help explain why we find one-sided cell phone conversations in public spaces so intrusive, but it also reveals the ineluctable way we are drawn to imbue the events around us with rational explanations.

The discomfort with ambiguity and arbitrariness is equally powerful, or more so, in our need for a rational understanding of our own lives. We strive to fit the events of our lives into a cohesive story that accounts for our circumstances, the things that befall us, and the choices we make. Each of us has a different narrative that has many threads woven into it from our shared culture and experience of being human, as well as many distinct threads that explain the singular events of one’s personal past. All these experiences influence what comes to mind in a current situation and the narrative through which you make sense of it: Why nobody in my family attended college until me. Why my father never made a fortune in business. Why I’d never want to work in a corporation, or, maybe, Why I would never want to work for myself. We gravitate to the narratives that best explain our emotions. In this way, narrative and memory become one. The memories we organize meaningfully become those that are better remembered. Narrative provides not only meaning but also a mental framework for imbuing future experiences and information with meaning, in effect shaping new memories to fit our established constructs of the world and ourselves. No reader, when asked to account for the choices made under pressure by a novel’s protagonist, can keep her own life experience from shading her explanation of what must have been going on in the character’s interior world. The success of a magician or politician, like that of a novelist, relies on the seductive powers of narrative and on the audience’s willing suspension of disbelief. Nowhere is this more evident than in the national political debate, where like-minded people gather online, at community meetings, and in the media to find common purpose and expand the story they feel best explains their sense of how the world works and how humans and politicians should behave.

You can see how quickly personal narrative is invoked to explain emotions when you read an article online whose author has argued a position on almost any subject—for example, an op-ed piece supporting the use of testing as a powerful tool for learning. Scan the comments posted by readers: some sing hallelujah while others can scarcely contain their umbrage, each invoking a personal story that supports or refutes the column’s main argument. The psychologists Larry Jacoby, Bob Bjork, and Colleen Kelley, summing up studies on illusions of comprehension, competence, and remembering, write that it is nearly impossible to avoid basing one’s judgments on subjective experience. Humans do not give greater credence to an objective record of a past event than to their subjective remembering of it, and we are surprisingly insensitive to the ways our particular construals of a situation are unique to ourselves. Thus the narrative of memory becomes central to our intuitions regarding the judgments we make and the actions we take.5 It is a confounding paradox, then, that the changeable nature of our memory not only can skew our perceptions but also is essential to our ability to learn. As will be familiar to you by now, every time we call up a memory, we make the mind’s routes to that memory stronger, and this capacity to strengthen, expand, and modify memory is central to how we deepen our learning and broaden the connections to what we know and what we can do. Memory has some similarities to a Google search algorithm, in the sense that the more you connect what you learn to what you already know, and the more associations you make to a memory (for example, linking it with a visual image, a place, or a larger story), then the more mental cues you have through which to find and retrieve the memory again later. This capacity expands our agency: our ability to take action and be effective in the world. At the same time, because memory is a shape-shifter, reconciling the competing demands of emotion, suggestions, and narrative, it serves you well to stay open to the fallibility of your certainties: even your most cherished memories may not represent events in the exact way they occurred.

Memory can be distorted in many ways. People interpret a story in light of their world knowledge, imposing order where none had been present so as to make a more logical story. Memory is a reconstruction. We cannot remember every aspect of an event, so we remember those elements that have greatest emotional significance for us, and we fill in the gaps with details of our own that are consistent with our narrative but may be wrong.

People remember things that were implied but not specifically stated. The literature is full of examples. In one, many people who read a paragraph about a troubled girl named Helen Keller later mistakenly recalled the phrase “deaf, dumb, and blind” as being in the text. This mistake was rarely made by another group who read the same paragraph about a girl named Carol Harris.6

Imagination inflation refers to the tendency of people who, when asked to imagine an event vividly, will sometimes begin to believe, when asked about it later, that the event actually occurred. Adults who were asked “Did you ever break a window with your hand?” were more likely on a later life inventory to report that they believed this event occurred during their lifetimes. It seems that asking the question led them to imagine the event, and the act of having imagined it had the effect, later, of making them more likely to think it had occurred (relative to another group who answered the question without having previously imagined it occurring).

Hypothetical events that are imagined vividly can seat themselves in the mind as firmly as memories of actual events. For instance, when it is suspected that a child is being sexually abused and he is interviewed and questioned about it, he may imagine experiences that the interviewer describes and then later come to “remember” them as having occurred.7 (Sadly, of course, many memories of childhood sexual abuse are absolutely true, usually ones reported soon after the occurrence.) Another type of memory illusion is one caused by suggestion, which may arise simply in the way a question is asked. In one example, people watched a video of a car running a stop sign at an intersection and colliding with another car passing through. Those who were later asked to judge the speed of the vehicles when they “contacted” each other gave an average estimate of thirty-two miles per hour. Those who were asked to judge the speed when the two vehicles “smashed” into each other estimated on average forty-one miles per hour. If the speed limit was thirty miles per hour, asking the question the second way rather than the first could lead to the driver’s being charged with speeding. Of course, the legal system knows the danger of witnesses being asked “leading questions” (ones that encourage a particular answer), but such questions are difficult to avoid completely, because suggestibility can be very subtle. After all, in the case just discussed, the two cars did “smash together.”8 Some witnesses to crimes who are struggling to recall them are instructed to let their minds roam freely, to generate whatever comes to mind, even if it is a guess. However, the act of guessing about possible events causes people to provide their own misinformation, which, if left uncorrected, they may later come to retrieve as memories. That is one reason why people who have been interviewed after being hypnotized are barred from testifying in court in almost all states and Canadian provinces. The hypnotic interview typically encourages people to let their thoughts roam freely and produce everything that comes to mind, in hopes that they will retrieve information that would not otherwise be produced. However, this process causes them to produce much erroneous information, and studies have shown that when they are tested later, under instructions only to tell exactly what they remember of the actual events, their guesses made while under hypnosis cloud their memories about what truly happened. In particular, they remember events they produced under hypnosis as actual experiences, even under conditions (in the laboratory) when it is known that the events in question did not occur.9 Interference from other events can distort memory. Suppose the police interview a witness shortly after a crime, showing pictures of possible suspects. Time passes, but eventually the police nab a suspect, one whose picture had been viewed by the witness. If the witness is now asked to view a lineup, he may mistakenly remember one of the suspects whose photo he saw as having been present at the crime. A particularly vivid example of a related process happened to the Australian psychologist Donald M. Thomson. A woman in Sydney was watching television in midday when she heard a knock at the door. When she answered it, she was attacked, raped, and left unconscious. When she awoke and dialed the police, they came to her aid, got a description of her assailant, and launched a search. They spotted Donald Thomson walking down a Sydney street, and he matched the description. They arrested him on the spot. It turns out that Thomson had an airtight alibi—at the exact time of the rape, he was being interviewed on a live television show. The police did not believe him and sneered when he was being interrogated. However, the story was true. The woman had been watching the show when she heard the knock on the door. The description she gave the police was apparently of the man she saw on television, Donald Thomson, rather than the rapist. Her System 1 reaction—quick but sometimes mistaken—provided the wrong description, probably due to her extreme emotional state.10 What psychologists call the curse of knowledge is our tendency to underestimate how long it will take another person to learn something new or perform a task that we have already mastered. Teachers often suffer this illusion—the calculus instructor who finds calculus so easy that she can no longer place herself in the shoes of the student who is just starting out and struggling with the subject. The curse-of-knowledge effect is close kin to hindsight bias, or what is often called the knew-it-all-along effect, in which we view events after the fact as having been more predictable than they were before they occurred. Stock market pundits will confidently announce on the evening news why the stock market behaved as it did that day, even though they could not have predicted the movements that morning.11 Accounts that sound familiar can create the feeling of knowing and be mistaken for true. This is one reason that political or advertising claims that are not factual but are repeated can gain traction with the public, particularly if they have emotional resonance. Something you once heard that you hear again later carries a warmth of familiarity that can be mistaken for memory, a shred of something you once knew and cannot quite place but are inclined to believe. In the world of propaganda, this is called “the big lie” technique—even a big lie told repeatedly can come to be accepted as truth.

Fluency illusions result from our tendency to mistake fluency with a text for mastery of its content. For example, if you read a particularly lucid presentation of a difficult concept, you can get the idea that it is actually pretty simple and perhaps even that you knew it all along. As discussed earlier, students who study by rereading their texts can mistake their fluency with a text, gained from rereading, for possession of accessible knowledge of the subject and consequently overestimate how well they will do on a test.

Our memories are also subject to social influence and tend to align with the memories of the people around us. If you are in a group reminiscing about past experiences and someone adds a wrong detail about the story, you will tend to incorporate this detail into your own memory and later remember the experience with the erroneous detail. This process is called “memory conformity” or the “social contagion of memory”: one person’s error can “infect” another person’s memory. Of course, social influences are not always bad. If someone recalls details of joint memory on which you are somewhat hazy, your subsequent memory will be updated and will hold a more accurate record of the past event.12 In the obverse of the social influence effect, humans are predisposed to assume that others share their beliefs, a process called the false consensus effect. We generally fail to recognize the idiosyncratic nature of our personal understanding of the world and interpretation of events and that ours differ from others’. Recall how surprised you were recently, on commiserating with a friend about the general state of affairs, to discover that she sees in an entirely different light matters on which you thought the correct view was fundamental and obvious: climate change, gun control, fracking of gas wells—or perhaps something very local, such as whether to pass a bond issue for a school building or to oppose construction of a big box store in the neighborhood.13 Confidence in a memory is not a reliable indication of its accuracy. We can have utmost faith in a vivid, nearly literal memory of an event and yet find that we actually have it all wrong. National tragedies, like the assassination of President John Kennedy or the events surrounding 9/11, create what psychologists call “flashbulb” memories, named for the vivid images that we retain: where we were when we got the news, how we learned it, how we felt, what we did. These memories are thought to be indelible, burned into our minds, and it is true that the broad outlines of such catastrophes, thoroughly reported in the media, are well remembered, but your memory of your personal circumstances surrounding the events may not necessarily be accurate. There have been numerous studies of this phenomenon, including surveys of fifteen hundred Americans’ memories of the September 11 attacks. In this study, the respondents’ memories were surveyed a week after the attacks, again a year later, and then again three years and ten years later. Respondents’ most emotional memories of their personal details at the time they learned of the attacks are also those of which they are most confident and, paradoxically, the ones that have most changed over the years relative to other memories about 9/11.14 Mental Models

As we develop mastery in the various areas of our lives, we tend to bundle together the incremental steps that are required to solve different kinds of problems. To use an analogy from a previous chapter, you could think of them as something like smart-phone apps in the brain. We call them mental models. Two examples in police work are the choreography of the routine traffic stop and the moves to take a weapon from an assailant at close quarters. Each of these maneuvers involves a set of perceptions and actions that cops can adapt with little conscious thought in response to context and situation. For a barista, a mental model would be the steps and ingredients to produce a perfect sixteen-ounce decaf frappuccino. For the receptionist at urgent care, it’s triage and registration.

The better you know something, the more difficult it becomes to teach it. So says physicist and educator Eric Mazur of Harvard. Why? As you get more expert in complex areas, your models in those areas grow more complex, and the component steps that compose them fade into the background of memory (the curse of knowledge). A physicist, for example, will create a mental library of the principles of physics she can use to solve the various kinds of problems she encounters in her work: Newton’s laws of motion, for example, or the laws of conservation of momentum. She will tend to sort problems based on their underlying principles, whereas a novice will group them by similarity of surface features, like the apparatus being manipulated in the problem (pulley, inclined plane, etc.). One day, when she goes to teach an intro physics class, she explains how a particular problem calls for something from Newtonian mechanics, forgetting that her students have yet to master the underlying steps she has long ago bundled into one unified mental model. This presumption by the professor that her students will readily follow something complex that appears fundamental in her own mind is a metacognitive error, a misjudgment of the matchup between what she knows and what her students know. Mazur says that the person who knows best what a student is struggling with in assimilating new concepts is not the professor, it’s another student.15 This problem is illustrated through a very simple experiment in which one person plays a common tune inside her head and taps the rhythm with her knuckles and another person hearing the rhythmic taps must guess the tune. Each tune comes from a fixed set of twenty-five, so the statistical chance of guessing it is 4 percent. Tellingly, the participants who have the tune in mind estimate that the other person will guess correctly 50 percent of the time, but in fact the listeners guess correctly only 2.5 percent of the time, no better than chance.

Like Coach Dooley’s football players memorizing their playbooks, we all build mental libraries of myriad useful solutions that we can call on at will to help us work our way from one Saturday game to the next. But we can be tripped by these models, too, when we fail to recognize a new problem that appears to be a familiar one is actually something quite different and we pull out a solution to address it that doesn’t work or makes things worse. The failure to recognize when your solution doesn’t fit the problem is another form of faulty self-observation that can lead you into trouble.

Mike Ebersold, the neurosurgeon, was called into the operating room one day to help a surgical resident who, in the midst of removing a brain tumor, was losing the patient. The usual model for cutting out a tumor calls for taking your time, working carefully around the growth, getting a clean margin, saving the surrounding nerves. But when the growth is in the brain, and if you get bleeding behind it, pressure on the brain can turn fatal. Instead of slow-and-careful, you need just the opposite, cutting the growth out very quickly so the blood can drain, and then working to repair the bleeding. “Initially you might be a little timid to take the big step,” Mike says. “It’s not pretty, but the patient’s survival depends on your knowing to switch gears and do it fast.” Mike assisted, and the surgery was successful.

Like the infant who calls the stranger Dada, we must cultivate the ability to discern when our mental models aren’t working: when a situation that seems familiar is actually different and requires that we reach for a different solution and do something new.

Unskilled and Unaware of It

Incompetent people lack the skills to improve because they are unable to distinguish between incompetence and competence. This phenomenon, of particular interest for metacognition, has been named the Dunning-Kruger effect after the psychologists David Dunning and Justin Kruger. Their research showed that incompetent people overestimate their own competence and, failing to sense a mismatch between their performance and what is desirable, see no need to try to improve. (The title of their initial paper on the topic was “Unskilled and Unaware of It.”) Dunning and Kruger have also shown that incompetent people can be taught to raise their competence by learning the skills to judge their own performance more accurately, in short, to make their metacognition more accurate. In one series of studies that demonstrate this finding, they gave students a test of logic and asked them to rate their own performance. In the first experiment the results confirmed expectations that the least competent students were the most out of touch with their performance: students who scored at the twelfth percentile on average believed that their general logical reasoning ability fell at the sixty-eighth percentile.

In a second experiment, after taking an initial test and rating their own performance, the students were shown the other students’ answers and then their own answers and asked to reestimate the number of test questions they had answered correctly. The students whose performance was in the bottom quartile failed to judge their own performance more accurately after seeing the more competent choices of their peers and in fact tended to raise their already inflated estimates of their own ability.

A third experiment explored whether poor performers could learn to improve their judgment. The students were given ten problems in logical reasoning and after the test were asked to rate their logical reasoning skills and test performance. Once again, the students in the bottom quartile grossly overestimated their performance. Next, half the students received ten minutes of training in logic (how to test the accuracy of a syllogism); the other half of the students were given an unrelated task. All the students were then asked to estimate again how well they had performed on the test. Now the students in the bottom quartile who had received the training were much more accurate estimators of the number of questions they got right and of how they performed compared to the other students. Those in the bottom quartile who didn’t receive the training held to their mistaken conviction that they had performed well.

How is it that incompetent people fail to learn through experience that they are unskilled? Dunning and Kruger offer several theories. One is that people seldom receive negative feedback about their skills and abilities from others in everyday life, because people don’t like to deliver the bad news. Even if people get negative feedback, they must come to an accurate understanding of why the failure occurred. For success everything must go right, but by contrast, failure can be attributed to any number of external causes: it’s easy to blame the tool for what the hand cannot do. Finally, Dunning and Kruger suggest that some people are just not astute at reading how other people are performing and are therefore less able to spot competence when they see it, making them less able to make comparative judgments of their own performance.

These effects are more likely to occur in some contexts and with some skills than with others. In some domains, the revelation of one’s incompetence can be brutally frank. The authors can all remember from their childhoods when a teacher would appoint two boys to pick other kids for softball teams. The good players are picked first, the worst last. You learn your peers’ judgments of your softball abilities in a very public manner, so it would be hard for the last-picked player to think “I must be really good at softball.” However, most realms of life do not render such stark judgments of ability.17 To sum up, the means by which we navigate the world—Daniel Kahneman’s Systems 1 and 2—rely on our perceptual systems, intuition, memory, and cognition, with all their tics, warts, biases, and flaws. Each of us is an astounding bundle of perceptual and cognitive abilities, coexisting with the seeds of our own undoing. When it comes to learning, what we choose to do is guided by our judgments of what works and what doesn’t, and we are easily misled.

Our susceptibility to illusion and misjudgment should give us all pause, and especially so to the advocates of “student-directed learning,” a theory now current among some parents and educators. This theory holds that students know best what they need to study to master a subject, and what pace and methods work best for them. For example, at Manhattan Free School in East Harlem, opened in 2008, students “do not receive grades, take tests or have to do anything they do not feel like doing.” The Brooklyn Free School, which opened in 2004, along with a new crop of homeschooling families who call themselves “unschoolers,” follows the precept that whatever intrigues the learner is what will result in the best learning.18 The intent is laudatory. We know that students need to take more control of their own learning by employing strategies like those we have discussed. For example, they need to test themselves, both to attain the direct benefits of increased retention and to determine what they know and don’t know to more accurately judge their progress and focus on material that needs more work. But few students practice these strategies, and those who do will need more than encouragement if they are to practice them effectively: It turns out that even when students understand that retrieval practice is a superior strategy, they often fail to persist long enough to get the lasting benefit. For example, when students are presented with a body of material to master, say a stack of foreign vocabulary flashcards, and are free to decide when to drop a card out of the deck because they’ve learned it, most students drop the card when they’ve gotten it right once or twice, far sooner than they should. The paradox is that those students who employ the least effective study strategies overestimate their learning the most and, as a consequence of their misplaced confidence, they are not inclined to change their habits.

The football player preparing for next Saturday’s game doesn’t leave his performance to intuition, he runs through his plays and mixes it up to discover the rough edges and work them out on the field well before suiting up for the big game. If this kind of behavior were anywhere close to the norm for students in their academics today, then self-directed learning would be highly effective. But of course the football player is not self-directed, his practice is guided by a coach. Likewise, most students will learn academics better under an instructor who knows where improvement is needed and structures the practice required to achieve it.19 The answer to illusion and misjudgment is to replace subjective experience as the basis for decisions with a set of objective gauges outside ourselves, so that our judgment squares with the real world around us. When we have reliable reference points, like cockpit instruments, and make a habit of checking them, we can make good decisions about where to focus our efforts, recognize when we’ve lost our bearings, and find our way back again. Here are some examples.

Tools and Habits for Calibrating Your Judgment

Most important is to make frequent use of testing and retrieval practice to verify what you really do know versus what you think you know. Frequent low-stakes quizzes in class help the instructor verify that students are in fact learning as well as they appear to be and reveal the areas where extra attention is needed. Doing cumulative quizzing, as Andy Sobel does in his political economics course, is especially powerful for consolidating learning and knitting the concepts from one stage of a course into new material encountered later. As a learner, you can use any number of practice techniques to self-test your mastery, from answering flashcards to explaining key concepts in your own words, and to peer instruction (see below).

Don’t make the mistake of dropping material from your testing regime once you’ve gotten it correct a couple of times. If it’s important, it needs to be practiced, and practiced again. And don’t put stock in momentary gains that result from massed practice. Space your testing, vary your practice, keep the long view.

Peer instruction, a learning model developed by Eric Mazur, incorporates many of the foregoing principles. The material to be covered in class is assigned for reading beforehand. In class, the lecture is interspersed with quick tests that present students with a conceptual question and give them a minute or two to grapple with it; they then try, in small groups, to reach a consensus on the correct answer. In Mazur’s experience, this process engages the students in the underlying concepts of the lecture material; reveals students’ problems in reaching understanding; and provides opportunities for them to explain their understanding, receive feedback, and assess their learning compared to other students. Likewise, the process serves as a gauge for the instructor of how well the students are assimilating the material and in what areas more or less work is needed. Mazur tries to pair students who initially had different answers to a question so that they can see another point of view and try to convince one another of who is right.

For two more examples of this technique, see the profiles of the professors Mary Pat Wenderoth and Michael D. Matthews in Chapter 8.20

Pay attention to the cues you’re using to judge what you have learned. Whether something feels familiar or fluent is not always a reliable indicator of learning. Neither is your level of ease in retrieving a fact or a phrase on a quiz shortly after encountering it in a lecture or text. (Ease of retrieval after a delay, however, is a good indicator of learning.) Far better is to create a mental model of the material that integrates the various ideas across a text, connects them to what you already know, and enables you to draw inferences. How ably you can explain a text is an excellent cue for judging comprehension, because you must recall the salient points from memory, put them into your own words, and explain why they are significant—how they relate to the larger subject.

Instructors should give corrective feedback, and learners should seek it. In his interview with Errol Morris, the psychologist David Dunning argues that the path to self-insight leads through other people. “So it really depends on what sort of feedback you are getting. Is the world telling you good things? Is the world rewarding you in a way that you would expect a competent person to be rewarded? If you watch other people, you often find there are different ways to do things; there are better ways to do things. ‘I’m not as good as I thought I was, but I have something to work on.’ ” Think of the kids lining up to join the softball team—would you be picked? 21 In many fields, the practice of peer review serves as an external gauge, providing feedback on one’s performance. Most medical practice groups have morbidity/mortality conferences, and if a doctor has a bad patient outcome, it will be presented there. The other doctors will pick it apart, or say “You did a good job, it was just a bad situation.” Mike Ebersold argues that people in his field should practice as a part of a group. “If there are other neurosurgeons around you, it’s a safeguard. If you’re doing something that’s not acceptable, they’ll call you to task for it.” In many settings, your judgment and learning are calibrated by working alongside a more experienced partner: airline first officers with captains, rookies with seasoned cops, residents with experienced surgeons. The apprentice model is a very old one in human experience, as novices (whether cobblers or attorneys) have traditionally learned their craft from experienced practitioners.

In other settings, teams are formed of people with complementary areas of expertise. When doctors implant medical devices like pacemakers and neural stimulators of the type that treat incontinence or the symptoms of Parkinson’s disease, the manufacturer has a product representative right in the operating room with the surgeon. The rep has seen many surgeries using the device, knows the kinds of patients that will benefit from it, knows the contraindications and adverse events, and has a hotline to the engineers and clinicians on the company’s staff. The rep tracks the surgery to make sure the device is implanted in the correct position, the leads are inserted to the correct depth, and so on. Every part of the team benefits. The patient is assured of an appropriate and successful surgery. The doctor gets product and troubleshooting expertise at her fingertips. And the company makes sure its products are used correctly.

Training that simulates the kinds of demands and changeable conditions that can be expected in real-world settings helps learners and trainers assess mastery and focus on areas where understanding or competency need to be raised. Take police work, where many different forms of simulation are used in training. For firearms training it’s often video-based scenarios, with a large screen set up at one end of a room where a number of props have been placed to imitate the situation confronting the officer, who enters the scene armed with a gun that has been modified to interact with the video.

Lieutenant Catherine Johnson of the Minneapolis Police Department describes a couple of such simulations in which she has trained:

One was a traffic stop. The training room had the screen at one end and objects around the room—a big blue mailbox, a fire hydrant, a doorway—that you could use for cover in dealing with what was happening on the screen. I remember walking toward the screen, and the video simulating my coming up to the car as I did that, very realistic, and suddenly the trunk popped up and a guy with a shotgun rose out and shot me. Which, to this day, every time I go up to a car on a traffic stop, I push down hard on the trunk to make sure it isn’t open. And it’s because of that one scenario in the training that I went through.

Another firearm simulation was a domestic call, and it starts where I am approaching the residence and there’s a guy on his porch. The instant I show up I see that he has a gun in his hand. I order him to drop it, and the first thing he does is turn and start walking away. And my thinking at that point is that I can’t shoot this guy in the back, and there’s nobody over there that looks to be in danger, so what am I going to do? In the time it takes me to process whether or not I should shoot this guy, he’s already turned around and shot me. Because my reaction was slower than his action. Action beats reaction every time. That’s one mantra that’s drilled into our minds.22 The firearms simulations can play out in a variety of ways both deadly and peaceful. There’s not so much a right or wrong answer to the situation as there is a complex set of factors, some of which, like whether the individual on the porch has a criminal history, may be known to the officer when she enters the scene. At the conclusion, the officer debriefs with her trainer, getting feedback. The exercise isn’t all about technique, it’s about clear thinking and appropriate reflexes—visual and verbal clues to watch for, possible outcomes, being clear about the appropriate use of deadly force, and finding the words after the fact that will account for actions you have taken in the urgency of the moment.

Simulation is not perfect. Johnson recounts how officers are trained to take a gun from an assailant at close quarters, a maneuver they practice by role-playing with a fellow officer. It requires speed and deftness: striking an assailant’s wrist with one hand to break his grip while simultaneously wresting the gun free with the other. It’s a move that officers had been in the habit of honing through repetition, taking the gun, handing it back, taking it again. Until one of their officers, on a call in the field, took the gun from an assailant and handed it right back again. In their mutual astonishment, the officer managed to reseize the gun and hang onto it. The training regime had violated the cardinal rule that you should practice like you play, because you will play like you practice.

Sometimes the most powerful feedback for calibrating your sense of what you do and don’t know are the mistakes you make in the field, assuming you survive them and are receptive to the lesson.

6 Get Beyond Learning Styles

ALL LEARNERS ARE DIFFERENT, and all rising to a great place, as Francis Bacon tells us, is by a winding stair.1

Consider the story of Bruce Hendry, born in 1942, raised on the banks of the Mississippi north of Minneapolis by a machinist and a homemaker, just another American kid with skinned knees and fire in the belly to get rich. When we talk about self-made men, the story often sounds familiar. This is not that story. Bruce Hendry is self-made, but the story is in the winding stair, how he found his way, and what it helps us understand about differences in how people learn.

The idea that individuals have distinct learning styles has been around long enough to become part of the folklore of educational practice and an integral part of how many people perceive themselves. The underlying premise says that people receive and process new information differently: for example, some learn better from visual materials, and others learn better from written text or auditory materials. Moreover, the theory holds that people who receive instruction in a manner that is not matched to their learning style are at a disadvantage for learning.

In this chapter, we acknowledge that everyone has learning preferences, but we are not persuaded that you learn better when the manner of instruction fits those preferences. Yet there are other kinds of differences in how people learn that do matter. First, the story of Bruce, to help frame our argument.

Active Learning from the Get-Go

Part of the secret to Bruce is his sense, from the earliest age, of being the one in charge of Bruce. When he was two his mother, Doris, told him he couldn’t cross the street because a car might hit him. Every day, Bruce crossed the street, and every day Doris gave him a spanking. “He was born aggressive,” Doris told friends.

At eight he bought a ball of string at a garage sale for a dime, cut it up, and sold the pieces for a nickel each. At ten he got a paper route. At eleven he added caddying. At twelve he stuffed his pocket with $30 in savings, sneaked out of his bedroom window before dawn with an empty suitcase, and hitchhiked 255 miles to Aberdeen, South Dakota. He stocked up on Black Cats, cherry bombs, and roman candles, illegal in Minnesota, and hitched home before supper. Over the next week, Doris couldn’t figure out why all the paperboys were dropping by the house for a few minutes and leaving. Bruce had struck gold, but the paper route supervisor found out and tipped off Bruce Senior. The father told the son if he ever did it again he’d get the licking of his life. Bruce repeated the buying trip the following summer and got the promised licking. “It was worth it,” he says.2 He was thirteen, and he had learned a lesson about high demand and short supply.

The way Bruce figured, rich people were probably no smarter than he was, they just had knowledge he lacked. Looking at how he went after the knowledge he sought will illustrate some of the learning differences that matter. One, of course, is taking charge of your own education, a habit with Bruce from age two that he has exhibited through the years with remarkable persistence. There are other signal behaviors. As he throws himself into one scheme after another, he draws lessons that improve his focus and judgment. He knits what he learns into mental models of investing, which he then uses to size up more complex opportunities and find his way through the weeds, plucking the telling details from masses of irrelevant information to reach the payoff at the end. These behaviors are what psychologists call “rule learning” and “structure building.” People who as a matter of habit extract underlying principles or rules from new experiences are more successful learners than those who take their experiences at face value, failing to infer lessons that can be applied later in similar situations. Likewise, people who single out salient concepts from the less important information they encounter in new material and who link these key ideas into a mental structure are more successful learners than those who cannot separate wheat from chaff and understand how the wheat is made into flour.

When he was barely a teenager, Bruce saw a flyer advertising wooded lots on a lake in central Minnesota. Advised that no one ever lost money on real estate, he bought one. Over four subsequent summers, with occasional help from his dad, he built a house on it, confronting each step in the process one at a time, figuring it out for himself or finding someone to show him how. To dig the basement, he borrowed a trailer and hooked it up to his ’49 Hudson. He paid 50 cents for every load his friends excavated, shovel by shovel, and then charged the owner of a nearby lot that needed fill a dollar for it. He learned how to lay block from a friend whose father was in the cement business and then laid himself a foundation. He learned how to frame the walls from the salesman at the lumber yard. He plumbed the house and wired it the same way, a wide-eyed kid asking around how you do that sort of thing. “The electrical inspector disapproved it,” Bruce recalls. “At the time, I figured it was because they wanted a union guy to do it, so I popped for a union guy to come up from the Cities and redo all my wiring. Looking back, I’m sure what I had done was totally dangerous.” He was nineteen and a university student the summer he traded the house for the down payment on a fourplex in Minneapolis. It was a simple premise: four apartments would generate four checks in the mail, month in and month out. Soon, besides his studies at university, he was managing the rental property, paying on the mortgage, answering midnight calls over broken plumbing, raising rents and losing tenants, trying to fill vacant units, and pouring in more money. He had learned how to parlay a vacant lot into a house, and a house into an apartment complex, but in the end the lesson proved a sour one, yielding more headache than reward. He sold the fourplex and swore off real estate for the next two decades.

Out of college, Bruce went to work for Kodak as a microfilm salesman. In his third year, he was one of five top salesmen in the country. That was the year he found out how much his branch manager was making: less than Bruce made as a salesman, if he factored in his company car and expense account. It pays better to be a rainmaker than a manager: another lesson learned, another step up Bruce’s winding stair. He quit to join a brokerage firm and sell stocks.

From this new vantage point, more lessons: “If I brought a dollar into the firm in trading commissions, half went to the firm and half of the remaining half went to the IRS. To make real money, I had to focus more on investing my own money and less on making sales commissions.” Oops, another lesson: investing in stocks is risky. He lost as much investing his own money as he earned in commissions selling investments to his clients. “You have no control of the down side. If a stock drops 50 percent, it has to go up by 100 percent just to break even. A hundred percent is a lot harder to make than fifty is to lose!” More knowledge banked. He bided his time, casting his eyes about for the insight he was after.

Enter Sam Leppla.

As Bruce tells it, Leppla was just a guy who roamed the Minneapolis skyways in those days, from one investment firm to another, talking deals and giving advice. One day he told Bruce about some bonds in a distressed company that were selling for 22 cents on the dollar. “There were twenty-two points of unpaid back interest on these bonds,” Bruce recalls, “so when the company came out of bankruptcy, you’d collect the back interest—in other words, 100 percent of your investment cost—and you’d still own a paying bond.” It amounted to free money. “I didn’t buy any,” Bruce says. “But I watched it, and it worked out exactly like Sam predicted. So, I called him up and said, ‘Can you come down and tell me what you’re doing?’ ” Leppla taught Bruce a more complex understanding of the relationships between price, supply, demand, and value than he’d learned from a suitcase full of fireworks. Leppla’s modus operandi was drawn from the following precept. When a company runs into trouble, the first claim on its assets belongs not to its owners, the shareholders, but to its creditors: the suppliers and bondholders. There’s a pecking order to bonds. Those bonds paid first are called senior bonds. Any residual assets after the senior bonds are paid go to pay off the junior bonds. Junior bonds in a troubled company get cheap if investors fear there won’t be enough assets left over to cover their value, but investors’ fear, laziness, and ignorance can depress bond prices far below the worth of the underlying assets. If you can ascertain that actual worth and you know the price of the bonds, you can invest with very little risk.

Here was the kind of knowledge Bruce had been seeking.

Florida real estate investment trusts were distressed at the time, so Sam and Bruce started looking into those, buying where they could see that the fire-sale prices significantly discounted the underlying values. “We’d buy these for 5 dollars and sell them for 50. Everything we bought made money.” They had a good run, but market prices caught up with values, and soon they were in need of another idea.

At the time, eastern railroads were going bankrupt, and the federal government was buying their assets to form Conrail and Amtrak. As Bruce tells it, “One day Sam said, ‘Railroads go bankrupt every fifty years and no one knows anything about them. They are real complicated and they take years to work out.’ So we found a guy who knew about railroads. Barney Donahue. Barney was an ex–IRS agent and a railroad buff. If you’ve ever met a real railroad buff, they think it, they breathe it, they can tell you the weight of the track and they can tell you the numbers on the engines. He was one of those guys.” A central tenet of their investment model was to discover more than other investors knew about residual assets and the order in which the bonds were to be honored. Armed with the right knowledge, they could cherry-pick the underpriced junior bonds most likely to be paid off. Donahue checked out the different railroads and decided that the best one to invest in was the Erie Lackawanna, because it had the most modern equipment when it filed for bankruptcy. Hendry, Leppla, and Donahue dived in for a closer look. They traveled the entire length of the Erie’s track to check its condition. They counted the equipment that remained, looked at its condition, and checked in Moody’s transportation manuals to calculate values. “You just do the arithmetic: What’s an engine worth? A boxcar? A mile of track?” The Erie had issued fifteen different bonds over its 150 years in operation, and the value of each bond was dependent in part on where it stood in seniority compared to the others. Bruce’s research turned up a little document in which the financial institutions had agreed to the sequence in which bonds were to be paid off when the assets were liquidated. With a fix on the value of the company’s assets, liabilities, and the bond structure, they knew what each class of bonds was worth. Bondholders who hadn’t done this homework were in the dark. Junior bonds were selling at steeply discounted prices because they were so far down the food chain that investors doubted they would ever see their money. Bruce’s calculations suggested otherwise, and he was buying.

It’s a longer story than we have space to tell. A railroad bankruptcy is an astonishingly convoluted affair. Bruce committed himself to understanding the entirety of the process better than anybody else. Then he knocked on doors, challenged the good-old-boys’ power structure that was managing the proceedings, and eventually succeeded in getting appointed by the courts to chair the committee that represented the bondholders’ interests in the bankruptcy process. When the Erie came out of bankruptcy two years later, he was made chairman and CEO of the company. He hired Barney Donahue to run it. Hendry, Donahue, and the board guided the surviving corporation through the remaining lawsuits, and when the dust settled, Bruce’s bonds paid twice face value, twenty times what he paid for some of the junior bonds he had purchased.

The Erie Lackawanna, with all its complexity and David versus Goliath qualities, was just the kind of mess that became Bruce Hendry’s bread and butter: finding a company in trouble, burrowing into its assets and liabilities, reading the fine print on credit obligations, looking at its industry and where things are headed, understanding the litigation process, and wading into it armed with a pretty good idea of how things were going to play out.

There are stories of other remarkable conquests. He took control of Kaiser Steel, staved off its liquidation, guided it out of bankruptcy as CEO, and was awarded 2 percent ownership of the new corporation. He interceded in the failure of First RepublicBank of Texas and came out the other side with a 600 percent return on some of his first investments in the company. When manufacturers stopped making railroad boxcars because they were in oversupply, Bruce bought a thousand of the last ones built, collected 20 percent on his investment from lease contracts that the railroads were bound to honor, and then sold the cars a year later when they were in short supply and fetching a handsome price. The story of Hendry’s rise is both familiar and particular; familiar in the nature of the quest and particular in the ways Bruce has “gone to school” on his ventures, building his own set of rules for what makes an investment opportunity attractive, stitching the rules into a template, and then finding new and different ways to apply it.

When he is asked how he accounts for his success, the lessons he cites are deceptively simple: go where the competition isn’t, dig deep, ask the right questions, see the big picture, take risks, be honest. But these explanations aren’t very satisfying. Behind them is a more interesting story, the one we infer from reading between the lines: how he figured out what knowledge he needed and how he then went after it; how early setbacks helped seed the skills of shrewder judgment; and how he developed a nose for value where others can only smell trouble. His gift for detecting value seems uncanny. His stories bring to mind the kid who, waking up on his fourth birthday to find a big pile of manure in the yard, dances around it crying, “I’m pretty sure there’s a pony in there somewhere!” All people are different, a truism we quickly discern as children, comparing ourselves to siblings. It’s evident in grade school, on the sports field, in the boardroom. Even if we shared Bruce Hendry’s desire and determination, even if we took his pointers to heart, how many of us would learn the art of knowing which pile had a pony in it? As the story of Bruce makes clear, some learning differences matter more than others. But which differences? That’s what we’ll explore in the rest of this chapter.

One difference that appears to matter a lot is how you see yourself and your abilities.

As the maxim goes, “Whether you think you can or you think you can’t, you’re right.” The work of Carol Dweck, described in Chapter 7, goes a long way toward validating this sentiment. So does a Fortune article of a few years ago that tells of a seeming contradiction, the stories of people with dyslexia who have become high achievers in business and other fields despite their learning disabilities. Richard Branson, of Virgin Records and Virgin Atlantic Airways, quit school at sixteen to start and run businesses now worth billions; Diane Swonk is one of the top economic forecasters in the United States; Craig McCaw is a pioneer of the cellular phone industry; Paul Orfalea founded Kinko’s. These achievers and others, when asked, told their stories of overcoming adversity. All had trouble in school and with the accepted methods of learning, most were mislabeled low IQ, some were held back or shunted into classes for the mentally retarded, and nearly all were supported by parents, tutors, and mentors who believed in them. Branson recalled, “At some point, I think I decided that being dyslexic was better than being stupid.” There, in a phrase, Branson’s personal narrative of exceptionalism.3 The stories we create to understand ourselves become the narratives of our lives, explaining the accidents and choices that have brought us where we are: what I’m good at, what I care about most, and where I’m headed. If you’re among the last kids standing on the sidelines as the softball teams are chosen up, the way you understand your place in the world likely changes a little, shaping your sense of ability and the subsequent paths you take.

What you tell yourself about your ability plays a part in shaping the ways you learn and perform–how hard you apply yourself, for example, or your tolerance for risk-taking and your willingness to persevere in the face of difficulty. But differences in skills, and your ability to convert new knowledge into building blocks for further learning, also shape your routes to success. Your finesse at softball, for example, depends on a constellation of different skills, like your ability to hit the ball, run the bases, and field and throw the ball. Moreover, skill on the playing field is not a prerequisite for becoming a star in the sport in a different capacity. Many of the best managers and coaches in pro sports were mediocre or poor players but happen to be exceptional students of their games. Although Tony LaRussa’s career as a baseball player was short and undistinguished, he went on to manage ball teams with remarkable success. When he retired, having chalked up six American and National League championships and three World Series titles, he was hailed as one of the greatest managers of all time.

Each of us has a large basket of resources in the form of aptitudes, prior knowledge, intelligence, interests, and sense of personal empowerment that shape how we learn and how we overcome our shortcomings. Some of these differences matter a lot—for example, our ability to abstract underlying principles from new experiences and to convert new knowledge into mental structures. Other differences we may think count for a lot, for example having a verbal or visual learning style, actually don’t.

On any list of differences that matter most for learning, the level of language fluency and reading ability will be at or near the top. While some kinds of difficulties that require increased cognitive effort can strengthen learning, not all difficulties we face have that effect. If the additional effort required to overcome the deficit does not contribute to more robust learning, it’s not desirable. An example is the poor reader who cannot hold onto the thread of a text while deciphering individual words in a sentence. This is the case with dyslexia, and while dyslexia is not the only cause of reading difficulties, it is one of the most common, estimated to affect some 15 percent of the population. It results from anomalous neural development during pregnancy that interferes with the ability to read by disrupting the brain’s capacity to link letters to the sounds they make, which is essential for word recognition. People don’t get over dyslexia, but with help they can learn to work with and around the problems it poses. The most successful programs emphasize practice at manipulating phonemes, building vocabulary, increasing comprehension, and improving fluency of reading. Neurologists and psychologists emphasize the importance of diagnosing dyslexia early and working with children before the third grade while the brain is still quite plastic and potentially more malleable, enabling the rerouting of neural circuits.

Dyslexia is far more common among prison inmates than the general population, as a result of a series of bad turns that often begin when children who can’t read fall into a pattern of failure in school and develop low self-esteem. Some of them turn to bullying or other forms of antisocial behavior to compensate, and this strategy, if left unaddressed, can escalate into criminality.

While it is difficult for learners with dyslexia to gain essential reading skills and this disadvantage can create a constellation of other learning difficulties, the high achievers interviewed for the Fortune article argue that some people with dyslexia seem to possess, or to develop, a greater capacity for creativity and problem solving, whether as a result of their neural wiring or the necessity they face to find ways to compensate for their disability. To succeed, many of those interviewed reported that they had to learn at an early age how to grasp the big picture rather than struggling to decipher the component parts, how to think outside the box, how to act strategically, and how to manage risk taking—skills of necessity that, once learned, gave them a decided leg up later in their careers. Some of these skills may indeed have a neurological basis. Experiments by Gadi Geiger and Jerome Lettvin at Massachusetts Institute of Technology have found that individuals with dyslexia do poorly at interpreting information in their visual field of focus when compared to those without dyslexia. However, they significantly outperform others in their ability to interpret information from their peripheral vision, suggesting that a superior ability to grasp the big picture might have its origins in the brain’s synaptic wiring.4 There’s an enormous body of literature on dyslexia, which we won’t delve into here beyond acknowledging that some neurological differences can count for a lot in how we learn, and for some subset of these individuals, a combination of high motivation, focused and sustained personal support, and compensating skills or “intelligences” have enabled them to thrive.

مشارکت کنندگان در این صفحه

تا کنون فردی در بازسازی این صفحه مشارکت نداشته است.

🖊 شما نیز می‌توانید برای مشارکت در ترجمه‌ی این صفحه یا اصلاح متن انگلیسی، به این لینک مراجعه بفرمایید.