فصل 16

کتاب: چرا می‌خوابیم / فصل 16

فصل 16

توضیح مختصر

  • زمان مطالعه 0 دقیقه
  • سطح خیلی سخت

دانلود اپلیکیشن «زیبوک»

این فصل را می‌توانید به بهترین شکل و با امکانات عالی در اپلیکیشن «زیبوک» بخوانید

دانلود اپلیکیشن «زیبوک»

فایل صوتی

برای دسترسی به این محتوا بایستی اپلیکیشن زبانشناس را نصب کنید.

متن انگلیسی فصل

CHAPTER 16

A New Vision for Sleep in the Twenty-First Century

Accepting that our lack of sleep is a slow form of self-euthanasia, what can be done about it? In this book, I have described the problems and causes of our collective sleeplessness. But what of solutions? How can we effect change?

For me, addressing this issue involves two steps of logic. First, we must understand why the problem of deficient sleep seems to be so resistant to change, and thus persists and grows worse. Second, we must develop a structured model for effecting change at every possible leverage point we can identify. There is not going to be a single, magic-bullet solution. After all, there is not just one reason for why society is collectively sleeping too little, but many. Below, I sketch out a new vision for sleep in the modern world—a road map of sorts that ascends through numerous levels of intervention opportunities, visualized in figure 17.

Figure 17: Levels of Sleep Intervention

INDIVIDUAL TRANSFORMATION

Increasing sleep for an individual can be achieved through both passive methods, which require no effort from the individual and are thus preferable, and active methods, which do. Here are several possibilities that may not be so far-fetched, all of which build on proven scientific methods for enhancing sleep quantity and quality.

The intrusion of technology into our homes and bedrooms is claimed by many of my research colleagues to be robbing us of precious sleep, and I agree. Evidence discussed in this book, such as the harmful effects of LED-emitting devices at night, proves this to be true. Scientists have therefore lobbied to keep sleep analog, as it were, in this increasingly digital world, leaving technology out of the discussion.

Here, however, I actually disagree. Yes, the future of sleep is about a return to the past in the sense that we must reunite with regular, plentiful sleep, as we once knew a century ago. But to battle against rather than unite with technology is the wrong approach in my mind. For one thing, it’s a losing battle: we will never put that technological genie back into its bottle, nor do we need to. Instead, we can use this powerful tool to our advantage. Within three to five years, I am quite certain there will be commercially available, affordable devices that track an individual’s sleep and circadian rhythm with high accuracy. When that happens, we can marry these individual sleep trackers with the revolution of in-home networked devices like thermostats and lighting. Some are already trying to do this as I write.

Two exciting possibilities unfold. First, such devices could compare the sleep of each family member in each separate bedroom with the temperature sensed in each room by the thermostat. Using common machine-learning algorithms applied over time, we should be able to intelligently teach the home thermostat what the thermal sweet spot is for each occupant in each bedroom, based on the biophysiology calculated by their sleep-tracking device (perhaps splitting the difference when there are two or more individuals per room). Granted there are many different factors that make for a good or bad night of sleep, but temperature is very much one of them.

Better still, we could program a natural circadian lull and rise in temperature across the night that is in harmony with each body’s expectations, rather than the constant nighttime temperature set in most homes and apartments. Over time, we could intelligently curate a tailored thermal sleep environment that is personalized to the circadian rhythms of each individual occupant of each bedroom, departing from the unhelpful non-varying thermal backdrop that plagues the sleep of most people using standard home thermostats. Both these changes require no effort from an individual, and should hasten the speed of sleep onset, increase total sleep time, and even deepen NREM-sleep quality for all household members (as discussed in chapter 13).

The second passive solution concerns electric light. Many of us suffer from overexposure to nighttime light, particularly blue-dominant LED light from our digital devices. This evening digital light suppresses melatonin and delays our sleep timing. What if we can turn that problem into a solution? Soon, we should be able to engineer LED bulbs with filters that can vary the wavelength of light that they emit, ranging from warm yellow colors less harmful to melatonin, to strong blue light that powerfully suppresses it.

Paired with sleep trackers that can accurately characterize our personal biological rhythms, we can install these new bulbs throughout a home, all connected to the home network. The lightbulbs (and even other networked LED-screen devices, such as iPads) would be instructed to gradually dial down the harmful blue light in the home as the evening progresses, based on an individual’s (or set of individuals’) natural sleep-wake pattern. We could do this dynamically and seamlessly as individuals move from one room to the next in real time. Here again we can intelligently split the difference on the fly based on the biophysiological mix of whoever is in the room. In doing so, the users’ own brains and bodies, measured and translated through the wearables to the networked home, would synergistically regulate light and thus melatonin release that promotes, rather than impedes, optimal regulation of sleep for one and all. It is a vision of personalized sleep medicine.

Come the morning, we can reverse this trick. We can now saturate our indoor environments with powerful blue light that shuts off any lingering melatonin. This will help us wake up faster, more alert, and with a brighter mood, morning after morning.

We could even use this same light-manipulation idea to apply a slight nudge in someone’s sleep-wake rhythm within a biologically reasonable range (plus or minus thirty to forty minutes), should they desire, gradually moving it earlier or later. For example, if you have an unusually early morning meeting in the middle of the workweek, this technology, synched to your online calendar, would gradually begin shifting you (your circadian rhythm) to a slightly earlier bed and rise time starting on Monday. This way, that early-morning rise time on Wednesday won’t be as miserable, or cause such biological turmoil within your brain and body. This would be equally, if not more, applicable in helping individuals overcome jet lag when traveling between time zones, all dispensed through LED-emitting personal devices that people already travel with—phones, tablets, laptop computers.

Why stop at the home environment or in the infrequent circumstance of jet lag? Cars can adopt these same lighting solutions to help manipulate alertness during morning commutes. Some of the highest rates of drowsy-driving accidents occur during mornings, especially early mornings. What if car cockpits could be bathed in blue light during early-morning commutes? The levels would have to be tempered so as not to distract the driver or others on the road, but you’ll recall from chapter 13 that one does not need especially bright light (lux) to have a measurable impact of melatonin suppression and enhanced wakefulness. This idea could be particularly helpful in those parts of the Northern and Southern Hemispheres during their respective winter mornings where this issue is most problematic. In the workplace, for those lucky enough to have their own office, lighting rhythm could be custom fit to the occupant using the same principles. But even cubicles, which are not so different from the cell of a car, could be personally tailored in this light-dependent manner, based on the individual sitting in that cubicle.

How much benefit such changes would make remains to be proven, but I can already tell you of some data from ever-sleep-sensitive NASA, with which I worked on sleep issues early in my career. Astronauts on the International Space Station travel through space at 17,500 miles per hour and complete an orbit of the Earth once every ninety to one hundred minutes. As a result, they experience “daylight” for about fifty minutes, and “night” for about fifty minutes. Although astronauts are therefore treated to the delight of a sunrise and sunset sixteen times a day, it wreaks utter havoc on their sleep-wake rhythms, causing terrible issues with insomnia and sleepiness. Make a mistake at your job on planet Earth, and your boss may reprimand you. Make a mistake in a long metal tube floating through the vacuum of space with payloads and mission costs in the hundreds of millions, and the consequences can be much, much worse.

To combat this issue, NASA began collaborating with a large electrical company some years ago to create just the types of special lightbulbs I describe. The bulbs were to be installed in the space station to bathe the astronauts in a much more Earth-like cycle of twenty-four-hour light and dark. With regulated environmental light came a superior regulation of the astronauts’ biological melatonin rhythms, including their sleep, thereby reducing operations errors associated with fatigue. I must admit that the development cost of each lightbulb was in the neighborhood of $300,000. But numerous companies are now hard at work constructing similar bulbs for a fraction of that cost. The first iterations are just starting to come to market as I write. When costs become more competitive with standard bulbs, these and many other possibilities will become a reality.

Solutions that are less passive, requiring an individual to actively participate in change, will be harder to institute. Human habits, once established, are difficult to change. Consider the countless New Year’s resolutions you’ve made but never kept. Promises to stop the overeating, to get regular exercise, or to quit smoking are but a few examples of habits we often want to change to prevent ill health, yet rarely succeed at actually changing. Our persistence in sleeping too little may similarly appear to be a lost cause, but I am optimistic that several active solutions will make a real difference for sleep.

Educating people about sleep—through books, engaging lectures, or television programs—can help combat our sleep deficit. I know firsthand from teaching a class on the science of sleep to four hundred to five hundred undergraduates each semester. My students complete an anonymous sleep survey at the start and the end of the course. Across a semester of lectures, the amount of sleep they report getting increases by forty-two minutes per night on average. Trivial as that may sound, it does translate to five hours of extra sleep each week, or seventy-five extra hours of sleep each semester.

But this isn’t enough. I’m sure a depressingly large proportion of my students returned to their shorter, unhealthy sleep habits in the years after. Just as describing the scientific dangers of how eating junk food leads to obesity rarely ends up with people choosing broccoli over a cookie, knowledge alone is not enough. Additional methods are required.

One practice known to convert a healthy new habit into a permanent way of life is exposure to your own data. Research in cardiovascular disease is a good example. If patients are given tools that can be used at home to track their improving physiological health in response to an exercise plan—such as blood pressure monitors during exercise programs, scales that log body mass index during dieting efforts, or spirometry devices that register respiratory lung capacity during attempted smoking cessation—compliance rates with rehabilitation programs increase. Follow up with those same individuals after a year or even five, and more of them have maintained their positive change in lifestyle and behavior as a consequence. When it comes to the quantified self, it’s the old adage of “seeing is believing” that ensures longer-term adherence to healthy habits.

With wearables that accurately track our slumber fast emerging, we can apply this same approach to sleep. Harnessing smartphones as a central hub to gather an individual’s health data from various sources—physical activity (such as number of steps or minutes and intensity of exercise), light exposure, temperature, heart rate, body weight, food intake, work productivity, or mood—we show each individual how their own sleep is a direct predictor of their own physical and mental health. It’s likely that, if you wore such a device, you would find out that on the nights you slept more you ate less food the next day, and of a healthy kind; felt brighter, happier, and more positive; had better relationship interactions; and accomplished more in less time at work. Moreover, you would discover that during months of the year when you were averaging more sleep, you were sick less; your weight, blood pressure, and medication use were all lower; and your relationship or marriage satisfaction, as well as sex life, were better.

Reinforced day after day, month after month, and ultimately year after year, this nudge could change many people’s sleep neglect for the better. I’m not so naïve to think it would be a radical change, but if this increased your sleep amount by just fifteen to twenty minutes each night, the science indicates that it would make a significant difference across the life span and save trillions of dollars within the global economy at the population level, to name but two benefits. It could be one of the most powerful factors in a future vision that shifts from a model of sick care (treatment), which is what we do now, to health care (prevention)—the latter aiming to stave off a need for the former. Prevention is far more efficient than treatment, and costs far less in the long run.

Going even further, what if we moved from a stance of analytics (i.e., here is your past and/or current sleep and here is your past and/or current body weight) to that of forward-looking predictalytics? To explain the term, let me go back to the smoking example. There are efforts to create predictalytics apps that start with you taking a picture of your own face with the camera of your smartphone. The app then asks you how many cigarettes you smoke on average a day. Based on scientific data that understand how smoking quantity impacts outward health features such as bags under your eyes, wrinkles, psoriasis, thinning hair, and yellowed teeth, the app predictively modifies your face on the assumption of your continued smoking, and does so at different future time points: one year, two years, five years, ten years.

The very same approach could be adopted for sleep, but at many different levels: outward appearance as well as inward brain and body health. For example, we could show individuals their increasing risk (albeit non-deterministic) of conditions such as Alzheimer’s disease or certain cancers if they continue sleeping too little. Men could see projections on how much their testicles will shrink or their testosterone level will drop should their sleep neglect continue. Similar risk predictions could be made for gains in body weight, diabetes, or immune impairment and infection.

Another example involves offering individuals a prediction of when they should or should not get their flu shot based on sleep amount in the week prior. You will recall from chapter 8 that getting four to six hours of sleep a night in the week before your flu shot means that you will produce less than half of the normal antibody response required, while seven or more hours of sleep consistently returns a powerful and comprehensive immunization response. The goal would be to unite health-care providers and hospitals with real-time updates on an individual’s sleep, week to week. Through notifications, the software will identify the optimal time for when an individual should get their flu shot to maximize vaccination success.

Not only will this markedly improve an individual’s immunity but also that of the community, through developing more effective “herd immune benefits.” Few people realize that the annual financial cost of the flu in the US is around $100 billion ($10 billion direct and $90 billion in lost work productivity). Even if this software solution decreases flu infection rates by just a small percentage, it will save hundreds of millions of dollars by way of improved immunization efficiency by reducing the cost burden on hospital services, both the inpatient and outpatient service utilization. By avoiding lost productivity through illness and absenteeism during the flu season, businesses and the economy stand to save even more—potentially billions of dollars—and could help subsidize the effort.

We can scale this solution globally: anywhere there is immunization and the opportunity to track an individual’s sleep, there is the chance for marked cost savings to health-care systems, governments, and businesses, all with the motivated goal of trying to help people live healthier lives.

EDUCATIONAL CHANGE

Over the past five weeks, I conducted an informal survey of colleagues, friends, and family in the United States and in my home country of the United Kingdom. I also sampled friends and colleagues from Spain, Greece, Australia, Germany, Israel, Japan, South Korea, and Canada.

I asked about the type of health and wellness education they received at school when they were growing up. Did they receive instruction on diet? Ninety-eight percent of them did, and many still remembered some details (even if those are changing based on current recommendations). Did they receive tutelage on drugs, alcohol, safe sex, and reproductive health? Eighty-seven percent said yes. Was the importance of exercise impressed upon them at some point during their schooling, and/or was the practice of physical education activities mandatory on a weekly basis? Yes—100 percent of people confirmed it was.

This is hardly a scientific data set, but still, some form of dietary, exercise, and health-related schooling appears to be part of a worldwide educational plan that most children in developed nations receive.

When I asked this same diverse set of individuals if they had received any education about sleep, the response was equally universal in the opposite direction: 0 percent received any educational materials or information about sleep. Even in the health and personal wellness education that some individuals described, there was nothing resembling lip service to sleep’s physical or mental health importance. If these individuals are representative, it suggests that sleep holds no place in the education of our children. Generation after generation, our young minds continue to remain unaware of the immediate dangers and protracted health impacts of insufficient sleep, and I for one feel that is wrong.

I would be keen to work with the World Health Organization to develop a simple educational module that can be implemented in schools around the world. It could take many forms, based on age group: an animated short accessible online, a board game in physical or digital form (one that could even be played internationally with sleep “pen pals”), or a virtual environment that helps you explore the secrets of sleep. There are many options, all of them easily translatable across nations and cultures.

The goal would be twofold: change the lives of those children and, by way of raising sleep awareness and better sleep practice, have that child pass on their healthy sleep values to their own children. In this way, we would begin a familial transmission of sleep appreciation from one generation to the next, as we do with things like good manners and morality. Medically, our future generations would not only enjoy a longer life span, but, more importantly, a longer health span, absolved of the mid- and late-life diseases and disorders that we know are caused by (and not simply associated with) chronic short sleep. The cost of delivering such sleep education programs would be a tiny fraction of what we currently pay for our unaddressed global sleep deficit. If you are an organization, a business, or an individual philanthropist interested in helping make this wish and idea a reality, please do reach out to me.

ORGANIZATIONAL CHANGE

Let me offer three rather different examples for how we could achieve sleep reform in the workplace and key industries.

First, to employees in the workplace. The giant insurance company Aetna, which has almost fifty thousand employees, has instituted the option of bonuses for getting more sleep, based on verified sleep-tracker data. As Aetna chairman and CEO Mark Bertolini described, “Being present in the workplace and making better decisions has a lot to do with our business fundamentals.” He further noted, “You can’t be prepared if you’re half asleep.” If workers string together twenty seven-hour nights of sleep or more in a row, they receive a twenty-five-dollar-per-night bonus, for a (capped) total of five hundred dollars.

Some may scoff at Bertolini’s incentive system, but developing a new business culture that takes care of the entire life cycle of an employee, night and day, is as economically prudent as it is compassionate. Bertolini seems to know that the net company benefit of a well-slept employee is considerable. The return on the sleep investment in terms of productivity, creativity, work enthusiasm, energy, efficiency—not to mention happiness, leading to people wanting to work at your institution, and stay—is undeniable. Bertolini’s empirically justified wisdom overrides misconceptions about grinding down employees with sixteen- to eighteen-hour workdays, burning them out in a model of disposability and declining productivity, littered with sick days, all the while triggering low morale and high turnover rates.

I wholeheartedly endorse Bertolini’s idea, though I would modify it in the following way. Rather than—or as an alternative to—providing financial bonuses, we could offer added vacation time. Many individuals value time off more than modest financial perks. I would suggest a “sleep credit system,” with sleep time being exchanged for either financial bonuses or extra vacation days. There would be at least one proviso: the sleep credit system would not simply be calculated on total hours clocked during one week or one month. As we have learned, sleep continuity—consistently getting seven to nine hours of sleep opportunity each night, every night, without running a debt during the week and hoping to pay it off by binge-sleeping at the weekend—is just as important as total sleep time if you are to receive the mental and physical health benefits of sleep. Thus, your “sleep credit score” would be calculated based on a combination of sleep amount and night-to-night sleep continuity.

Those with insomnia need not be penalized. Rather, this method of routine sleep tracking would help them identify this issue, and cognitive behavioral therapy could be provided through their smartphones. Insomnia treatment could be incentivized with the same credit benefits, further improving individual health and productivity, creativity, and business success.

The second change-idea concerns flexible work shifts. Rather than required hours with relatively hard boundaries (i.e., the classic nine to five), businesses need to adapt a far more tapered vision of hours of operation, one that resembles a squished inverted-U shape. Everyone would be present during a core window for key interactions—say, twelve to three p.m. Yet there would be flexible tail ends either side to accommodate all individual chronotypes. Owls could start work late (e.g., noon) and continue into the evening, giving their full force of mental capacity and physical energy to their jobs. Larks can likewise do so with early start and finish times, preventing them from having to coast through the final hours of the “standard” workday with inefficient sleepiness. There are secondary benefits. Take rush-hour traffic as just one example, which would be lessened in both the morning and evening phases. The indirect cost savings of time, money, and stress would not be trivial.

Maybe your workplace claims to offer some version of this. However, in my consulting experience, the opportunity might be suggested but is rarely embraced as acceptable, especially in the eyes of managers and leaders. Dogmas and mind-sets appear to be one of the greatest rate-limiting barriers preventing better (i.e., sleep-smart) business practices.

The third idea for sleep change within industry concerns medicine. As urgent as the need to inject more sleep in residents’ work schedules is the need to radically rethink how sleep factors into patient care. I can illuminate this idea with two concrete examples.

EXAMPLE 1—PAIN

The less sleep you have had, or the more fragmented your sleep, the more sensitive you are to pain of all kinds. The most common place where people experience significant and sustained pain is often the very last place they can find sound sleep: a hospital. If you have been unfortunate enough to spend even a single night in the hospital, you will know this all too well. The problems are especially compounded in the intensive care unit, where the most severely sick (i.e., those most in need of sleep’s help) are cared for. Incessant beeping and buzzing from equipment, sporadic alarms, and frequent tests prevent anything resembling restful or plentiful sleep for the patient.

Occupational health studies of inpatient rooms and wards report a decibel level of sound pollution that is equivalent to that of a noisy restaurant or bar, twenty-four hours as day. As it turns out, 50 to 80 percent of all intensive care alarms are unnecessary or ignorable by staff. Additionally frustrating is that not all tests and patient checkups are time sensitive, yet many are ill-timed with regard to sleep. They occur either during afternoon times when patients would otherwise be enjoying a natural, biphasic-sleep nap, or during early-morning hours when patients are only now settling into solid sleep.

Little surprise that across cardiac, medical, and surgical intensive care units, studies consistently demonstrate uniformly bad sleep in all patients. Upset by the noisy, unfamiliar ICU environment, sleep takes longer to initiate, is littered with awakenings, is shallower in depth, and contains less overall REM sleep. Worse still, doctors and nurses consistently overestimate the amount of sleep they think patients obtain in intensive care units, relative to objectively measured sleep in these individuals. All told, the sleep environment, and thus sleep amount, of a patient in this hospital environment is entirely antithetical to their convalescence.

We can solve this. It should be possible to design a system of medical care that places sleep at the center of patient care, or very close to it. In one of my own research studies, we have discovered that pain-related centers within the human brain are 42 percent more sensitive to unpleasant thermal stimulation (non-damaging, of course) following a night of sleep deprivation, relative to a full, healthy eight-hour night of sleep. It is interesting to note that these pain-related brain regions are the same areas that narcotic medications, such as morphine, act upon. Sleep appears to be a natural analgesic, and without it, pain is perceived more acutely by the brain, and, most importantly, felt more powerfully by the individual. Morphine is not a desirable medication, by the way. It has serious safety issues related to the cessation of breathing, dependency, and withdrawal, together with terribly unpleasant side effects. These include nausea, loss of appetite, cold sweats, itchy skin, and urinary and bowel issues, not to mention a form of sedation that prevents natural sleep. Morphine also alters the action of other medications, resulting in problematic interaction effects.

Extrapolating from a now extensive set of scientific research, we should be able to reduce the dose of narcotic drugs on our hospital wards by improving sleep conditions. In turn, this would lessen safety risks, reduce the severity of side effects, and decrease the potential for drug interactions.

Improving sleep conditions for patients would not only reduce drug doses, it would also boost their immune system. Inpatients could therefore mount a far more effective battle against infection and accelerate postoperative wound healing. With hastened recovery rates would come shorter inpatient stays, reducing health-care costs and health insurance rates. Nobody wants to be in the hospital any longer than is absolutely necessary. Hospital administrators feel likewise. Sleep can help.

The sleep solutions need not be complicated. Some are simple and inexpensive, and the benefits should be immediate. We can start by removing any equipment and alarms that are not necessary for any one patient. Next, we must educate doctors, nurses, and hospital administrations on the scientific health benefits of sound sleep, helping them realize the premium we must place on patients’ slumber. We can also ask patients about their regular sleep schedules on the standard hospital admission form, and then structure assessments and tests around their habitual sleep-wake rhythms as much as possible. When I’m recovering from an appendicitis operation, I certainly don’t want to be woken up at 6:30 a.m. when my natural rise time is 7:45 a.m.

Other simple practices? Supply all patients with earplugs and a face mask when they first come onto a ward, just like the complimentary air travel bag you are given on long-haul flights. Use dim, non-LED lighting at night and bright lighting during the day. This will help maintain strong circadian rhythms in patients, and thus a strong sleep-wake pattern. None of these is especially costly; most of them could happen tomorrow, all of them to the significant benefit of a patient’s sleep, I’m certain.

EXAMPLE 2—NEONATES

To keep a preterm baby alive and healthy is a perilous challenge. Instability of body temperature, respiratory stress, weight loss, and high rates of infection can lead to cardiac instability, neurodevelopment impairments, and death. At this premature stage of life, infants should be sleeping the vast majority of the time, both day and night. However, in most neonatal intensive care units, strong lighting will often remain on throughout the night, while harsh electric overhead light assaults the thin eyelids of these infants during the day. Imagine trying to sleep in constant light for twenty-four hours a day. Unsurprisingly, infants do not sleep normally under these conditions. It is worth reiterating that which we learned in the chapter on the effects of sleep deprivation in humans and rats: a loss in the ability to maintain core body temperature, cardiovascular stress, respiratory suppression, and a collapse of the immune system.

Why are we not designing NICUs and their care systems to foster the very highest sleep amounts, thereby using sleep as the lifesaving tool that Mother Nature has perfected it to be? In just the last few months, we have preliminary research findings from several NICUs that have implemented dim-lighting conditions during the day and near-blackout conditions at night. Under these conditions, infant sleep stability, time, and quality all improved. Consequentially, 50 to 60 percent improvements in neonate weight gain and significantly higher oxygen saturation levels in blood were observed, relative to those preterms who did not have their sleep prioritized and thus regularized. Better still, these well-slept preterm babies were also discharged from the hospital five weeks earlier!

We can also implement this strategy in underdeveloped countries without the need for costly lighting changes by simply placing a darkening piece of plastic—a light-diffusing shroud, if you will—over neonatal cots. The cost is less than $1, but will have a significant, lux-reducing benefit, stabilizing and enhancing sleep. Even something as simple as bathing a young child at the right time before bed (rather than in the middle of the night, as I’ve seen occur) would help foster, rather than perturb, good sleep. Both are globally viable methods.

I must add that there is nothing stopping us from prioritizing sleep in similarly powerful ways across all pediatric units for all children in all countries.

PUBLIC POLICY AND SOCIETAL CHANGE

At the highest levels, we need better public campaigns educating the population about sleep. We spend a tiny fraction of our transportation safety budget warning people of the dangers of drowsy driving compared with the countless campaigns and awareness efforts regarding accidents linked to drugs or alcohol. This despite the fact that drowsy driving is responsible for more accidents than either of these two issues—and is more deadly. Governments could save hundreds of thousands of lives each year if they mobilized such a campaign. It would easily pay for itself, based on the cost savings to the health-care and emergency services bills that drowsy-driving accidents impose. It would of course help lower health-care and auto insurance rates and premiums for individuals.

Prosecutorial law regarding drowsy driving is another opportunity. Some states have a vehicular manslaughter charge associated with sleep deprivation, which is of course far harder to prove than blood alcohol level. Having worked with several large automakers, I can report that soon we will have smart technology inside of cars that may help us know, from a driver’s reactions, eyes, driving behavior, and the nature of the crash, what the prototypical “signature” is of a clearly drowsy-driving accident. Combined with a personal history, especially as personal sleep-tracking devices become more popular, we may be very close to developing the equivalent of a Breathalyzer for sleep deprivation.

I know that may sound unwelcome to some of you. But it would not if you had lost a loved one to a fatigue-related accident. Fortunately, the rise of semiautonomous-driving features in cars can help us avoid this issue. Cars can use these very same signatures of fatigue to heighten their watch and, when needed, take greater self-control of the vehicle from the driver.

At the very highest levels, transforming entire societies will be neither trivial nor easy. Yet we can borrow proven methods from other areas of health to shift society’s sleep for the better. I offer just one example. In the United States, many health insurance companies provide a financial credit to their members for joining a gym. Considering the health benefits of increased sleep amount, why don’t we institute a similar incentive for racking up more consistent and plentiful slumber? Health insurance companies could approve valid commercial sleep-tracking devices that individuals commonly own. You, the individual, could then upload your sleep credit score to your health-care provider profile. Based on a tiered, pro-rata system, with reasonable threshold expectations for different age groups, you would be awarded a lower insurance rate with increasing sleep credit on a month-to-month basis. Like exercise, this in turn will help improve societal health en masse and lower the cost of health-care utilization, allowing people to have longer and healthier lives.

Even with lower insurance paid by the individual, health insurance companies would still gain, as it would significantly decrease the cost burden of their insured individuals, allowing for greater profit margins. Everyone wins. Of course, just like a gym membership, some people will start off adhering to the regime but then stop, and some may look for ways to bend or play the system regarding accurate sleep assessment. However, even if only 50 to 60 percent of individuals truly increase their sleep amount, it could save tens or hundreds of millions of dollars in terms of health costs—not to mention hundreds of thousands of lives.

This tour of ideas offers, I hope, some message of optimism rather than the tabloid-like doom with which we are so often assaulted in the media regarding all things health. More than hope, however, I wish for it to spark better sleep solutions of your own; ideas that some of you may translate into a non- or for-profit commercial venture, perhaps.

مشارکت کنندگان در این صفحه

تا کنون فردی در بازسازی این صفحه مشارکت نداشته است.

🖊 شما نیز می‌توانید برای مشارکت در ترجمه‌ی این صفحه یا اصلاح متن انگلیسی، به این لینک مراجعه بفرمایید.